400 mA 2% and 4%Voltage Regulator Family

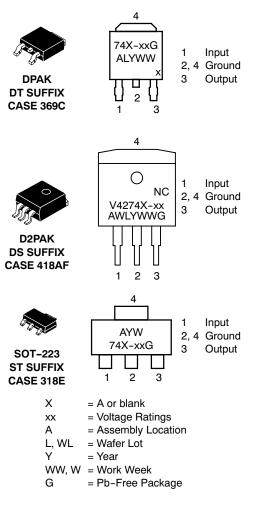
Description

The NCV4274 and NCV4274A is a precision micro-power voltage regulator with an output current capability of 400 mA available in the DPAK and D2PAK packages.

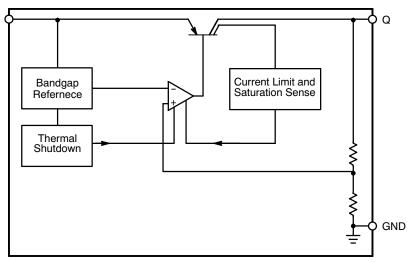
The output voltage is accurate within $\pm 2.0\%$ or $\pm 4.0\%$ depending on the version with a maximum dropout voltage of 0.5 V with an input up to 40 V. Low quiescent current is a feature drawing only 150 μ A with a 1 mA load. This part is ideal for automotive and all battery operated microprocessor equipment.

The regulator is protected against reverse battery, short circuit, and thermal overload conditions. The device can withstand load dump transients making it suitable for use in automotive environments.

Features


- 2.5, 3.3 V, 5.0 V, ±2.0% and ±4.0% Output Options
- Low 150 µA Quiescent Current at 1 mA load current
- 400 mA Output Current Capability
- Fault Protection
- +60 V Peak Transient Voltage with Respect to GND
 - -40 V Reverse Voltage
 - Short Circuit
 - Thermal Overload
- Very Low Dropout Voltage
- AEC-Q100 Qualified
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- These are Pb-Free Devices

ON Semiconductor®


http://onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet.

Pin Definitions and Functions

I

Pin No.	Symbol	Function
1	I	Input; Bypass directly at the IC a ceramic capacitor to GND.
2,4	GND	Ground
3	Q	Output; Bypass with a capacitor to GND.

1. DPAK 3LD package code 6025 2. D2PAK 3LD package code 6083

ABSOLUTE MAXIMUM RATINGS

Pin Symbol, Parameter		Symbol	Condition	Min	Max	Unit
I, Input-to-Regulator	Voltage	VI		-42	45	V
	Current	Ι _Ι		Internally Limited	Internally Limited	
I, Input peak Transient Voltage to Regulator w to GND	rith Respect	VI			60	V
Q, Regulated Output	Voltage	VQ	$V_Q = V_I$	-1.0	40	V
	Current	Ι _Q		Internally Limited	Internally Limited	
GND, Ground Current		I _{GND}		-	100	mA
Junction Temperature Storage Temperature		T _J T _{Stg}		_ _50	150 150	°C ℃
ESD Capability, Human Body Model		ESD _{HB}		4		kV
ESD Capability, Machine Model		ESD _{MM}		200		V
ESD Capability, Charged Device Model		ESD _{CDM}		1		kV

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

3. This device series incorporates ESD protection and is tested by the following methods:

ESD HBM tested per AEC-Q100-002 (EIA/JESD22-A114) ESD MM tested per AEC-Q100-003 (EIA/JESD22-A115)

ESD CDM tested per EIA/JES D22/C101, Field Induced Charge Model

OPERATING RANGE

Parameter	Symbol	Condition	Min	Мах	Unit
Input Voltage (5.0 V Version)	VI		5.5	40	V
Input Voltage (3.3 V, and 2.5 V Version)	VI		4.5	40	V
Junction Temperature	TJ		-40	150	°C

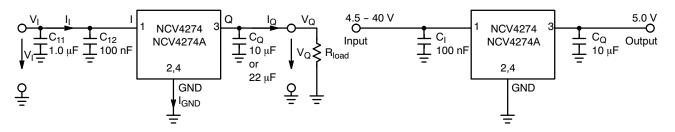
THERMAL RESISTANCE

Parameter		Symbol	Condition	Min	Max	Unit
Junction-to-Ambient	DPAK	R _{thja}		-	70 (Note 4)	°C/W
Junction-to-Ambient	D2PAK	R _{thja}		-	60 (Note 4)	°C/W
Junction-to-Case	DPAK	R _{thjc}		-	4	°C/W
Junction-to-Case	D2PAK	R _{thjc}		-	3	°C/W
Junction-to-Tab	SOT-223	Ψ-JLX, _{ΨLX}		-	14.5 (Note 5)	°C/W
Junction-to-Ambient	SOT-223	$R_{\theta JA}, \theta_{JA}$		-	169.7 (Note 5)	°C/W

Soldered in, minimal footprint, FR4
 1 oz copper, 5 mm² copper area, FR4

LEAD FREE SOLDERING TEMPERATURE AND MSL

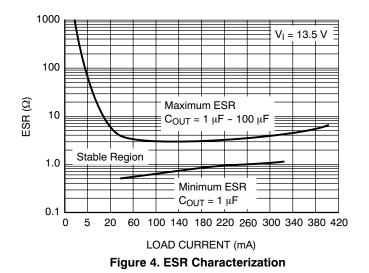
Parameter		Symbol	Condition	Min	Мах	Unit
Lead Free Soldering, (Note 6) Reflow (SMD styles only),	Pb-Free	T _{sld}	60s – 150s Above 217s 40s Max at Peak	-	265 pk	°C
Moisture Sensitivity Level		MSL	DPAK and D2PAK SOT-223	1 3	-	


6. Per IPC/JEDEC J-STD-020C

ELECTRICAL CHARACTERISTICS NCV4274A and NCV4274 5.0 V

 $-40^{\circ}C < T_J < 150^{\circ}C; \, V_I$ = 13.5 V unless otherwise noted.

			Min	Тур	Мах	Min	Тур	Max	
Parameter	Symbol	Test Conditions	N	NCV4274A		NCV4274		Unit	
REGULATOR									
Output Voltage (5.0 V Version)	V _Q	5 mA < I _Q < 400 mA 6V < V _I < 28 V	4.9	5.0	5.1	4.8	5.0	5.2	V
Output Voltage (5.0 V Version)	VQ	$\begin{array}{l} 5 \text{ mA} < I_Q < 200 \text{ mA} \\ 6 \text{ V} < \text{V}_I < 40 \text{ V} \end{array}$	4.9	5.0	5.1	4.8	5.0	5.2	V
Output Voltage (3.3 V Version)	V _Q	5 mA < I _Q < 400 mA 4.5 V < V _I < 28 V	3.23	3.3	3.37	3.17	3.3	3.43	V
Output Voltage (3.3 V Version)	VQ	5 mA < I _Q < 200 mA 4.5 V < V _I < 40 V	3.23	3.3	3.37	3.17	3.3	3.43	V
Output Voltage (2.5 V Version)	V _Q	5 mA < I _Q < 400 mA 4.5 V < V _I < 28 V	2.45	2.5	2.55	2.4	2.5	2.6	V
Output Voltage (2.5 V Version)	VQ	5 mA < I _Q < 200 mA 4.5 V < V _I < 40 V	2.45	2.5	2.55	2.4	2.5	2.6	V
Current Limit	Ι _Q	-	400	600	-	400	600	-	mA
Quiescent Current	Iq	$l_{q} = 1 \text{ mA} V_{Q} = 5.0 \text{ V} V_{Q} = 3.3 \text{ V} V_{Q} = 2.5 \text{ V} l_{q} = 250 \text{ mA} V_{Q} = 5.0 \text{ V} V_{Q} = 3.3 \text{ V} V_{Q} = 2.5 \text{ V} l_{q} = 400 \text{ mA} $		190 145 140 10 13 12	250 250 250 15 20 15	- - - -	190 145 140 10 13 12	250 250 250 15 20 15	μA μA μA mA mA
		$V_Q = 5.0 V$ $V_Q = 3.3 V$ $V_Q = 2.5 V$		20 30 28	35 45 35	- - -	20 30 28	35 45 35	mA mA mA
Dropout Voltage 5.0 V Version 3.3 V Version 2.5 V Version	V _{DR}	$ I_Q = 250 \text{ mA}, \\ V_{DR} = V_I - V_Q \\ V_I = 5.0 \text{ V} \\ V_I = 4.5 \text{ V} \\ V_I = 4.5 \text{ V} $	- -	250 - -	500 1.23 2.05	- - -	250 - -	500 1.33 2.1	mV V V
Load Regulation	DVQ	$I_Q = 5 \text{ mA to } 400 \text{ mA}$	-	7	20	-	7	30	mV
Line Regulation	DVQ	$DV_{I} = 12 V \text{ to } 32 V$ $I_{Q} = 5 \text{ mA}$	-	10	25	-	10	25	mV
Power Supply Ripple Rejection	P _{SRR}	fr = 100 Hz, V _r = 0.5 V _{PP}	-	60	-	-	60	-	dB
Temperature output voltage drift	dV _Q /dT		-	0.5	-	-	0.5	-	mV/K
Thermal Shutdown Temperature*	T _{SD}	I _Q = 5 mA	165	-	210	165	-	210	°C


*Guaranteed by design, not tested in production

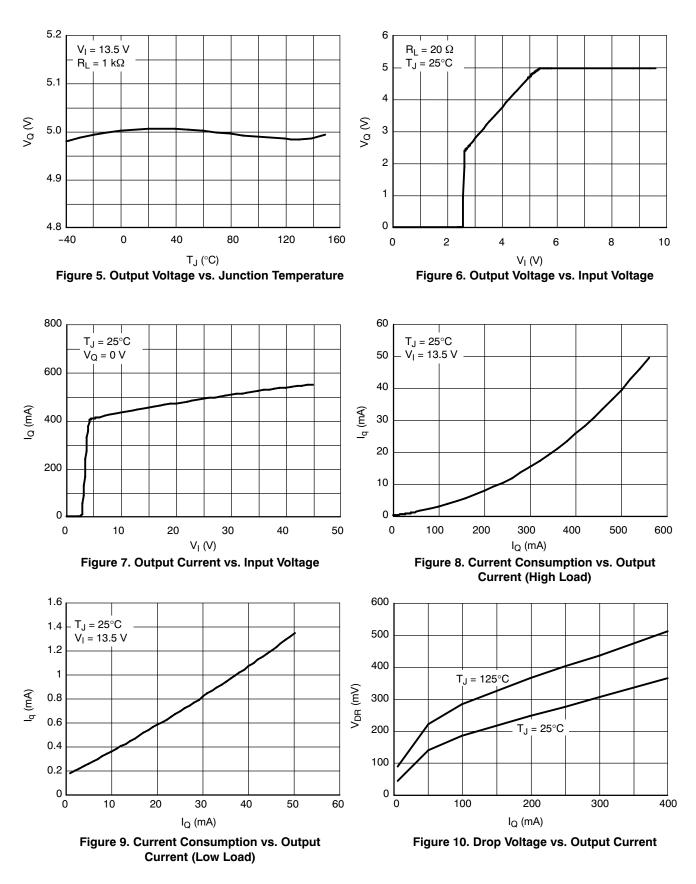

Figure 2. Measuring Circuit

Figure 3. Application Circuit

TYPICAL CHARACTERISTIC CURVES

TYPICAL CHARACTERISTIC CURVES – 5.0 V Version

TYPICAL CHARACTERISTIC CURVES – 5.0 V Version

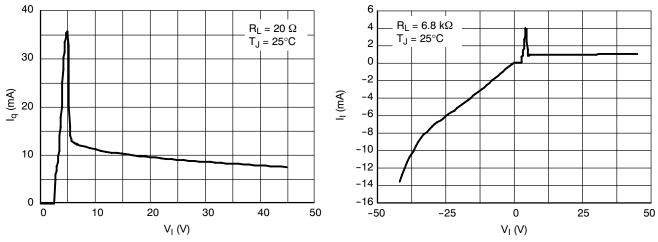
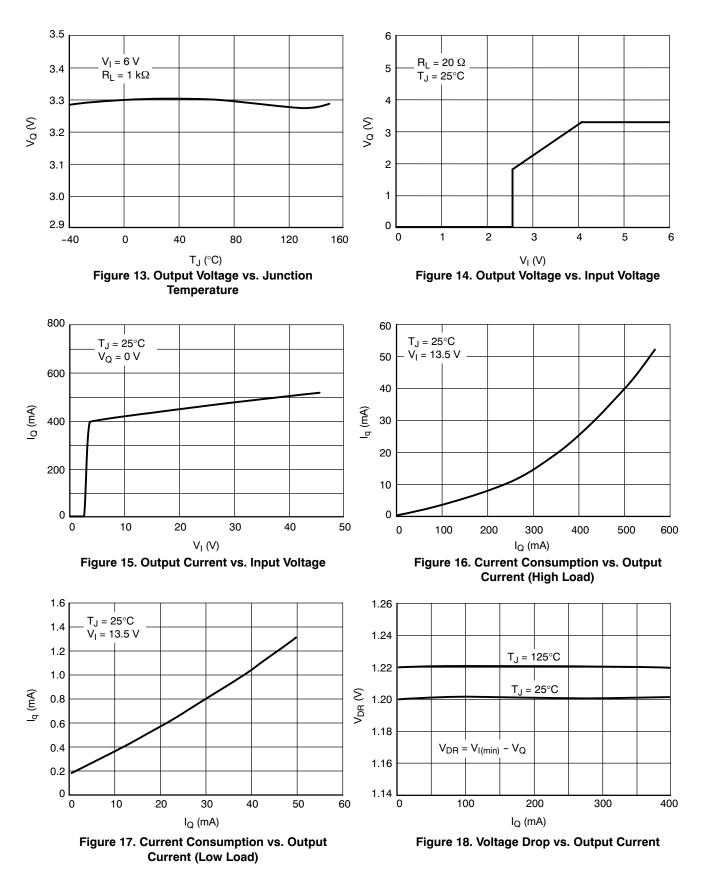



Figure 11. Current Consumption vs. Input Voltage

Figure 12. Input Current vs. Input Voltage

TYPICAL CHARACTERISTIC CURVES – 3.3 V Version

TYPICAL CHARACTERISTIC CURVES - 3.3 V Version

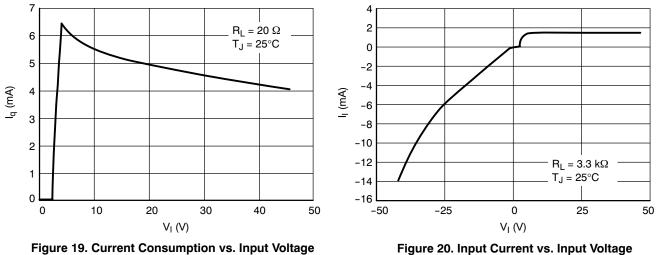
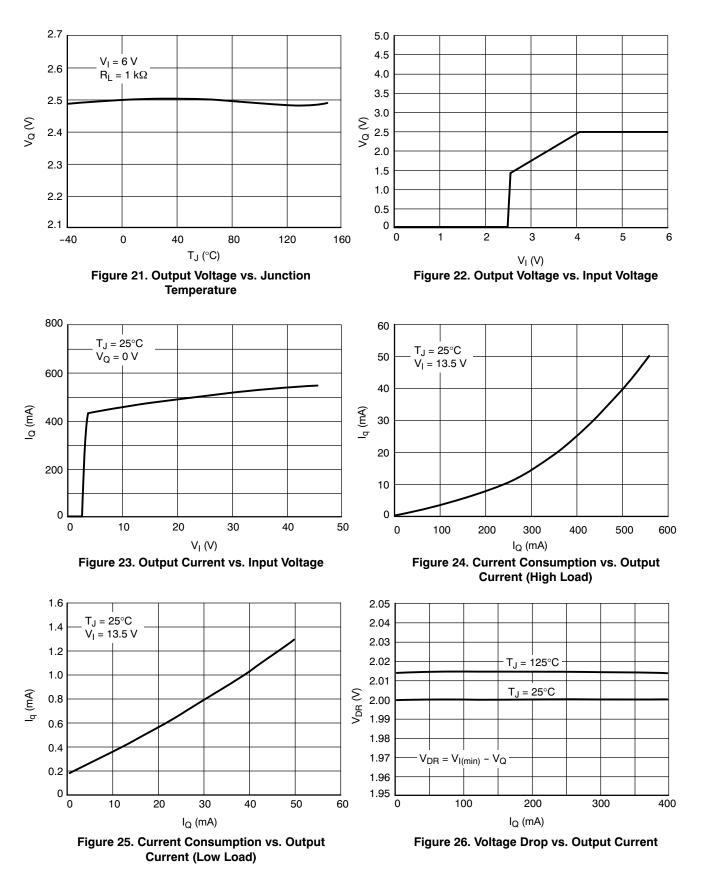



Figure 20. Input Current vs. Input Voltage

TYPICAL CHARACTERISTIC CURVES – 2.5 V Version

TYPICAL CHARACTERISTIC CURVES – 2.5 V Version

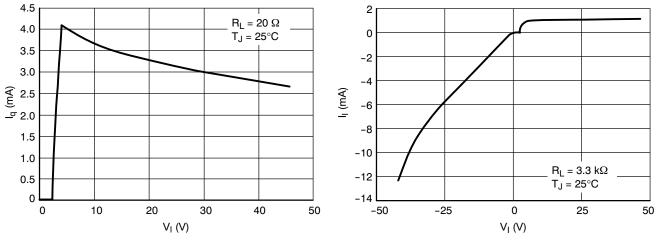


Figure 27. Current Consumption vs. Input Voltage

APPLICATION DESCRIPTION

Output Regulator

The output is controlled by a precision trimmed reference and error amplifier. The PNP output has saturation control for regulation while the input voltage is low, preventing over saturation. Current limit and voltage monitors complement the regulator design to give safe operating signals to the processor and control circuits.

Stability Considerations

The input capacitor C_{I1} in Figure 2 is necessary for compensating input line reactance. Possible oscillations caused by input inductance and input capacitance can be damped by using a resistor of approximately 1 Ω in series with C_{I2} .

The output or compensation capacitor helps determine three main characteristics of a linear regulator: startup delay, load transient response and loop stability.

The capacitor value and type should be based on cost, availability, size and temperature constraints. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures $(-25^{\circ}C \text{ to } -40^{\circ}C)$, both the value and ESR of the capacitor will vary considerably. The capacitor manufacturer's data sheet usually provides this information.

The value for the output capacitor C_Q shown in Figure 2 should work for most applications; however, it is not necessarily the optimized solution. Stability is guaranteed at values $C_Q \ge 2.2 \ \mu\text{F}$ and an ESR $\le 2.5 \ \Omega$ within the operating temperature range. Actual limits are shown in a graph in the Typical Performance Characteristics section.

Calculating Power Dissipation in a Single Output Linear Regulator

The maximum power dissipation for a single output regulator (Figure 3) is:

$$P_{D(max)} = [V_{I(max)} - V_{Q(min)}]I_{Q(max)} + V_{I(max)}I_{q}$$
 (eq. 1)

Where:

V_{I(max)} is the maximum input voltage,

V_{Q(min)} is the minimum output voltage,

 $I_{Q\left(max\right)}$ is the maximum output current for the application, and

 I_q is the quiescent current the regulator consumes at $I_{Q(max)}$.

Once the value of $P_{D(max)}$ is known, the maximum permissible value of R_{0JA} can be calculated:

$$\mathsf{P}_{\theta_{\mathsf{JA}}} = \frac{(150 \text{ C} - \mathsf{T}_{\mathsf{A}})}{\mathsf{P}_{\mathsf{D}}} \tag{eq. 2}$$

The value of $R_{\theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in Equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heat sink will be required. The current flow and voltages are shown in the Measurement Circuit Diagram.

Heat Sinks

A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

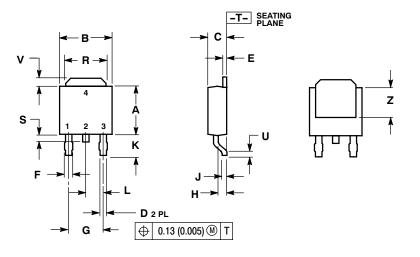
Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$:

$$\mathbf{R}_{\theta \mathsf{JA}} = \mathbf{R}_{\theta \mathsf{JC}} + \mathbf{R}_{\theta \mathsf{CS}} + \mathbf{R}_{\theta \mathsf{SA}} \tag{eq. 3}$$

Where:

 $R_{\theta JC}$ = the junction-to-case thermal resistance, $R_{\theta CS}$ = the case-to-heat sink thermal resistance, and $R_{\theta SA}$ = the heat sink-to-ambient thermal resistance. $R_{\theta IC}$ appears in the package section of the data sheet.

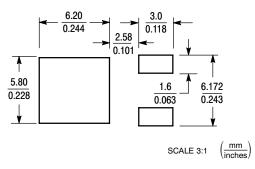
Like $R_{\theta JA}$, it too is a function of package type, $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heat sink and the interface between them. These values appear in data sheets of heat sink manufacturers. Thermal, mounting, and heat sinking are discussed in the ON Semiconductor application note AN1040/D, available on the ON Semiconductor Website.


ORDERING INFORMATION4

Device	Output Voltage Accuracy	Output Voltage	Package	Shipping [†]
NCV4274DS50G	4%	5.0 V	D2PAK (Pb-Free)	50 Units / Rail
NCV4274DS50R4G	4%	5.0 V	D2PAK (Pb-Free)	800 / Tape & Reel
NCV4274DT50G	4%	5.0 V	DPAK (Pb-Free)	75 Units / Rail
NCV4274DT50RKG	4%	5.0 V	DPAK (Pb-Free)	2500 / Tape & Reel
NCV4274ADS50G	2%	5.0 V	D2PAK (Pb-Free)	50 Units / Rail
NCV4274ADS50R4G	2%	5.0 V	D2PAK (Pb-Free)	800 / Tape & Reel
NCV4274ADT50G	2%	5.0 V	DPAK (Pb-Free)	75 Units / Rail
NCV4274ADT50RKG	2%	5.0 V	DPAK (Pb-Free)	2500 / Tape & Reel
NCV4274ST33T3G	4%	3.3 V	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV4274DT33RKG	4%	3.3 V	DPAK (Pb-Free)	2500 / Tape & Reel
NCV4274AST33T3G	2%	3.3 V	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV4274ADT33RKG	2%	3.3 V	DPAK (Pb-Free)	2500 / Tape & Reel
NCV4274ST25T3G	4%	2.5 V	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV4274AST25T3G	2%	2.5 V	SOT-223 (Pb-Free)	4000 / Tape & Reel

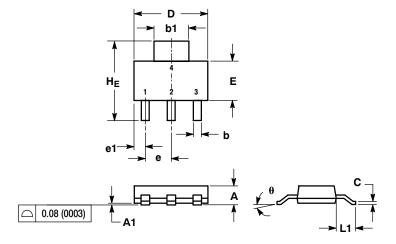
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


DPAK (SINGLE GAUGE) CASE 369C-01 ISSUE O

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

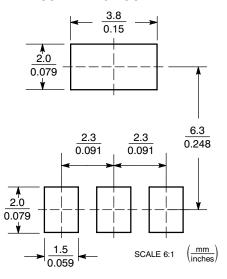
	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
Е	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.180	BSC	4.58	BSC
н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
κ	0.102	0.114	2.60	2.89
L	0.090	90 BSC 2.29		BSC
R	0.180	0.215	4.57	5.45
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
V	0.035	0.050	0.89	1.27
Ζ	0.155		3.93	


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

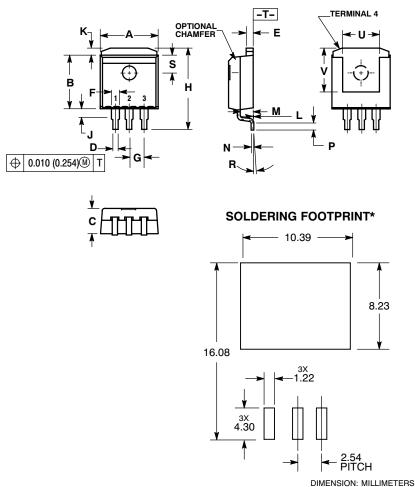
SOT-223 (TO-261) CASE 318E-04 ISSUE L



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

CONTROLLING DIMENSION. INCOM.	

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
Е	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L1	1.50	1.75	2.00	0.060	0.069	0.078
HE	6.70	7.00	7.30	0.264	0.276	0.287
θ	0°	-	10°	0°	-	10°


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

D2PAK CASE 418AF-01 **ISSUE A**

- NOTES: 3. DIMENSIONING AND TOLERANCING PER ANSI
- VI4.5M, 1982. CONTROLLING DIMENSION: INCH. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A 5. AND K
- AND N.
 DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD
- FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM

	INC	HES	MILLIN	IETERS	
DIM	MIN MAX		MIN	MAX	
Α	0.386	0.403	9.804	10.236	
В	0.356	0.368	9.042	9.347	
С	0.170	0.180	4.318	4.572	
D	0.026	0.036	0.660	0.914	
Е	0.045	0.055	1.143	1.397	
F	0.051	REF	1.295 REF		
G	0.100 BSC		2.540 BSC		
Н	0.539	0.579	13.691	14.707	
J	0.125	MAX	3.175 MAX		
K	0.050	REF	1.270 REF		
L	0.000	0.010	0.000	0.254	
М	0.088	0.102	2.235	2.591	
Ν	0.018	0.026	0.457	0.660	
Ρ	0.058	0.078	1.473	1.981	
R	5° F	REF	5°	REF	
S	0.116 REF		2.946	REF	
U	0.200) MIN	5.080 MIN		
۷	0.250) MIN	6.350) MIN	

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer applications by customer's technical experts. SCILLC does not convey any license under its patent rights or other rights of others. SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications and the provided in SCILLC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are some or the specifications are actively applications and actual performance may vary incidents and a specifications are actively applications and actual performance may vary incidents and actual performance may vary any license under its patent rights or the rights of others. SCILC products are not designed, intended for each customer applications are components in systems intended for surgical implant into the body, or other applications are actual performance. intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

For additional information, please contact your local

ON Semiconductor Website: www.onsemi.com

Sales Representative